Blind separation of sparse sources in the presence of outliers
نویسندگان
چکیده
5 Blind Source Separation (BSS) plays a key role to analyze multichannel data since it aims at recovering unknown underlying elementary sources from observed linear mixtures in an unsupervised way. In a large number of applications, multichannel measurements contain corrupted entries, which are highly detrimental for most BSS techniques. In this article, we introduce a 10 new robust BSS technique coined robust Adaptive Morphological Component Analysis (rAMCA). Based on sparse signal modeling, it makes profit of an alternate reweighting minimization technique that yields a robust estimation of the sources and the mixing matrix simultaneously with the removal of the spurious outliers. Numerical experiments are provided that illustrate the 15 robustness of this new algorithm with respect to aberrant outliers on a wide range of blind separation instances. In contrast to current robust BSS methods, the rAMCA algorithm is shown to perform very well when the number of observations is close or equal to the number of sources.
منابع مشابه
Unsupervised separation of sparse sources in the presence of outliers
Unsupervised or Blind Source Separation (BSS) aims at recovering underlying sources from linear mixtures. In real world applications, these multichannel measurements can contain some corrupted entries which are detrimental for most of the BSS techniques. We first discuss how the presence of outliers alters the sparse BSS problem and point out that the outliers can be detected and extracted than...
متن کاملSparse BSS in the presence of outliers
While real-world data are often grossly corrupted, most techniques of blind source separation (BSS) give erroneous results in the presence of outliers. We propose a robust algorithm that jointly estimates the sparse sources and outliers without requiring any prior knowledge on the outliers. More precisely, it uses an alternative weighted scheme to weaken the influence of the estimated outliers....
متن کاملBlind Voice Separation Based on Empirical Mode Decomposition and Grey Wolf Optimizer Algorithm
Blind voice separation refers to retrieve a set of independent sources combined by an unknown destructive system. The proposed separation procedure is based on processing of the observed sources without having any information about the combinational model or statistics of the source signals. Also, the number of combined sources is usually predefined and it is difficult to estimate based on the ...
متن کاملRobust Estimation in Linear Regression with Molticollinearity and Sparse Models
One of the factors affecting the statistical analysis of the data is the presence of outliers. The methods which are not affected by the outliers are called robust methods. Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers. Besides outliers, the linear dependency of regressor variables, which is called multicollinearity...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Signal Processing
دوره 138 شماره
صفحات -
تاریخ انتشار 2017